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Abstract In this work a new state dependent Uncertainty Principle between kinetic
and potential energy is formulated using Time independent Schrödinger Equation and
Correspondence Principle. Validity of the above said Uncertainty Principle is also dem-
onstrated by linear variational calculation of a one-dimensional model potential. An
objective function is also been designed, to support excited state non-linear variational
description of bound stationary state of any type of system. This newly designed func-
tion will serve as an alternative of �H in excited state nonlinear variational purpose.
The utility of these objective functions is demonstrated by already evolved non-linear
variational technique by using a one-dimensional model potential where crux of the
problem lies on the determination of the node of excited states.

Keywords Uncertainty principle · Objective function · Kinetic energy ·
Potential energy

1 Introduction

The Heisenberg Uncertainty Principle is, one of the most important characteristics of
Quantum Mechanics. For all quantum mechanical systems �x�px ≥ h̄

2 . It gives the
lower bound of the uncertainty product of position and momentum. Moreover this
uncertainty relation indicates that simultaneous measurement of both the quantity in
same precession is not possible. If one is good another must be bad. This is the special
characteristics of this relation. Now, whether same conclusion is true for measurement
of the uncertainties of T̂ , V̂ .
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Actually, it is known to all that any two operators say, Â, B̂ if do not commute, that
is if [ Â, B̂] �= 0 then both of them cannot be measured simultaneously with accuracy.
That means there is an uncertainty relation between them. Schwarz’s Inequality [1]
helps us in this purpose. Schwarz’s Inequality

〈φ1| |φ1〉 〈φ2| |φ2〉 ≥ |〈φ1| |φ2〉|2

Here, equality holds when φ1 and φ2 are linearly dependent.
if, φ1 = (A − 〈A〉) θ and φ2 = (B − 〈B〉) θ
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as T̂ (px ), V̂ (x) both Hermitian then,
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But, here the main objective is to formulate an uncertainty relation using the Cor-
respondence Principle. In this context, derivation of uncertainty relation between
T̂ (px ), V̂ (x) is more physical as their measurements related to energy of the states of
the system.

〈T 〉n + 〈V 〉n = 〈E〉n

For, stationary state, 〈E〉n = En .
The Rayleigh–Ritz variation method (minimisation of Rayleigh Quotient (RQ)) lies

in the heart of quantum chemistry. For a given Hamiltonian H , this variation method of
obtaining bound, approximate, quantum stationary states by minimizing the Rayleigh
quotient (RQ) [2,3] applies, in general, to the ground one. At best, the methodology
can be extended to encompass states that are lowest in energies of a specific symme-
try, provided the trial state incorporates the right symmetry information. This factor
restricts severely the applicability of the energy-minimum principle. Even in case of
simple systems, it is notable that the crux of the problem lies in our lack of knowl-
edge about the precise positions of nodes of excited-state wave functions. Indeed, if
we take a trial function with one or more variable nodal positions, it would turn out
that an unconstrained minimization of energy is achieved only by placing the nodes
farther beyond the classical turning points, thus getting closer and closer to the actual
ground state. In other words, had the nodal positions been exactly known beforehand,
one could use the said principle for approximate calculations of properties of excited
states in a general manner. Thus, an unconstrained minimization of the RQ cannot be
pursued to get excited bound states.

The linear variation method provides a way out. It says that [4,5] if one chooses
a suitable set of states {θi } with gradually increasing energies to meet the conditions
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(i) 〈θi |θk〉 = 0 and (ii) 〈θi | H |θk〉, for i = 0, 1, 2, . . . , k − 1, k > i , then the average
energy of state θk will be an upper bound to the true one. Hence, θk becomes a rep-
resentative of the state sought. In practice, therefore, nonlinear variations for excited
states must involve a number of orthogonality and decoupling constraints [6–9].

Another way out, is to minimise �H2 [10–12] for excited state in place of RQ.
This is a necessary as well as sufficient condition optimisation of trial state.

�H2 = �T 2 +�V 2 + (〈T V 〉 + 〈V T 〉 − 2 〈T 〉 〈V 〉) (1)

For stationary state,

�H2 = 0 (1a)

In this case optimisation can be carried out without concerning about the nodes of
the excited states. Thus it is notable that one can consider nodes as pre-exponential
parameter in non-linear minimisation of�H2. Moreover the minimisation step can be
executed without any restriction. But this type of minimisation never guarantees upper
bound results. Main problem of handling�H2 is technical. According to Eq. (1), dur-
ing minimisation using �H2, one have to perform 4th order differentiation of trial
state which is a tedious and complicated job. This makes the least square minimisation
as an unwelcoming method for optimisation [13].

One of the main concern of this work, is to formulate new objective function using
Time independent Schrödinger equation, Virial Theorem [14] and use it for minimisa-
tion instead of �H2. The generality of these new objective functions are remarkable
and synonymous to�H2, can be used in any optimisation step without any restriction.
More over one can bypass the technical problem related to �H2.

The organization is as follows. In Sect. 2, the formulation will completely dis-
cussed. Section 3, will concentrate on strategy and trial states. Pilot calculations to
demonstrate the basic methods with its various variants will concern us in Sect. 4.
Section 5, contains summarization of the major conclusions of these formulation.

2 Formulation

Time independent Schrödinger Equation

Ĥψn = Enψn

(T̂ + V̂ )ψn = Enψn

Now, if the equation is left multiplied by T̂ and consider the expectation value

�T 2
n = 〈T 〉n 〈V 〉n − 〈T V 〉n

Similarly, if the equation is left multiplied by V̂ and consider the expectation value

�V 2
n = 〈T 〉n 〈V 〉n − 〈V T 〉n

Then from Hyper-Virial Theorem 〈[T, V ]〉n = 0
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This relation is also true for any time independent trial state.

〈T V 〉n = 〈V T 〉n

thus,

�T 2
n = �V 2

n = 〈T 〉n 〈V 〉n − 〈T V 〉n (2)

This equation is the Master Equation in both the formulation.
Again, this equation is true for the Systems obeying Classical Mechanics

�T 2 = �V 2 = 〈T 〉 〈V 〉 − 〈T V 〉 (2a)

These two equations tells that this is a property of both quantum and classical systems.
We will now use this formulation in deriving a state dependent uncertainty principle
and also in optimisation purpose.

2.1 Formulation of state dependent uncertainty principle between T̂ ,V̂

According to Correspondence Principle [15], for, large quantum limit (n → ∞)
�T 2

n �V 2
n

〈T 〉2
n〈V 〉2

n
= �T 2

c �V 2
c

〈T 〉2
c 〈V 〉2

c
of all bound stationary states.

where c in suffix stands for classical mechanics values.
Let, �T 2

c �V 2
c

〈T 〉2
c 〈V 〉2

c
= k2

As, with increase of quantum number (n) �T 2
n

〈T 〉2
n
,
�V 2

n
〈V 〉2

n
both decreases, thus it can be

written that, for all bound states

�T 2
n �V 2

n ≥ k2 〈T 〉2
n 〈V 〉2

n (3)

Thus, here a new potential as well as state dependent uncertainty principle is derived,
only using the concept of correspondence principle. Additionally from Eqs. (2) and
(3) this concludes that at the stationary states of a conservative system, both must be
measured in same accuracy.

2.2 Formulation of objective functions for optimisation

Now, obeying Eq. (2) and using Schwarz’s Inequality, it can be written for bound
stationary state that,

�T 2
n �V 2

n = ∣
∣〈T V 〉n − 〈T 〉n 〈V 〉n

∣
∣
2 (4)
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But, as the aim is to find an objective function to support optimisation in excited non-
linear variational description, so, main focus is on the approximate solution of excited
state.

Thus, first it is being proved that 〈[T, V ]〉 = 0 for any real/imaginary wave function.
Then again from Schwarz’s Inequality it can be written that

�T 2
n �V 2

n ≥ ∣
∣〈T V 〉n − 〈T 〉n 〈V 〉n

∣
∣2 (5)

Now, concentrating on Eqs. (3) and (4) it is quite clear that equality holds for station-
ary state where as inequality for approximate cases. Now, whether there is any of the
approximate state where this inequality becomes equality. This can be explored by the
concept of linear dependence

(T − 〈T 〉) ψ = α (V − 〈V 〉) ψ (6)

Thus, by mathematical description equality holds for any value of α.
If, α = −1 then Eq. (5) is reduced to time independent Schrödinger Equation and

thus it is clear that,

α2 = 〈T V 〉�T 2

〈V T 〉�V 2 = �T 2

�V 2 = 1

But, here if α = ±1, �T 2 = �V 2

Thus, Eq. (1) is necessary but not sufficient condition for bound stationary states.
Again there is another necessary condition for bound stationary states which is

Virial Theorem and is true for systems obeying Quantum or Classical mechanics.

2 〈T 〉 =
〈
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〉
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These five conditions are necessary and sufficient condition for bound stationary states.
Because these two conditions (Eq. (2) and Virial Theorem) are simultaneously true
only in case of bound stationary states. Left hand side of condition (i)–(v) (P) will serve
as objective function instead of Eq. (1) in excited state non-linear optimisation scheme.

3 Choice of trial states

3.1 Choice of basis to demonstrate uncertainty principle

Here to demonstrate the newly formulated Uncertainty Principle for a symmetric
potential, linear variation scheme was adopted. We choose to employ the symme-
try-adapted cosine and sine functions that are the energy eigenfunctions of the parti-
cle-in-a-box problems in (−L , L). These bases have already been found to be quite
convenient in several types of variational calculations. They process nice convergence
properties as well. Specially, we write for the even and odd states [16–20], respectively,

�e
n =

N
∑

j=1

anj cos
(2 j − 1)πx

2L
(8)

and,

�e
n =

N
∑

j=1

bnj sin
jπx

L
(9)

The virtues of using such basis functions are, in brief, as follows. First, integrals
involved in H are quite easy to evaluate. Second, existence of the nonlinear varia-
tional parameter L allows one to adopt a coupled variational scheme that is far more
powerful than purely linear variations. Third, convergence of the process as a function
of N is ensured. Note that the basis set leads ultimately to a secular equation at each
L . But, we also realize that the kinetic energy part become infinitely large as L → 0.
At the other extreme, when L → ∞, the potential energy part behaves in a similar
fashion. Thus, qualitatively, the uncertainty principle guarantees the existence of an
optimal choice for L . So, the practice is to adopt the following scheme. Choose a
trial value for L , construct the H matrix and diagonalize it, optimize the coefficients
such that the lowest energy is minimized, continue the same process at other L-values,
and finally pick out the minimum of all such minima, corresponding to the optimal
L value. The states and energies are then assigned according to the usual practice of
linear variations. Then we calculate the desire properties using that state, and see how
quickly those properties converge to the classical value.

3.2 Choice of trial state for non-linear optimisation

Success of non-linear variational calculation depends on the choice of trial state φ̃n .
Because better the choice of trial state better will be the convergence of the results
more over as here the main focus is on excited state optimisation. Thus obeying the
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behaviour of the potential at x → 0 and x → ∞ the trial state is chosen for ground
state. As here demonstration is restricted to one dimensional model potential then for
excited state just consideration of the pre-exponential part for nodal information will
serve the purpose. Thus for the trial excited states will look like,

�̃n =
n

∏

j=1

(x − α j )φ̃0

where, nodal positions of �i defined by terms αi in the above expression. φ̃0 stands
for a node less function with embedded non-linear parameters that are to be varied.
As here there are both pre-exponential and exponential variables so to get reasonable
variational result one should opt At least three parameter exponential function.

3.2.1 Role of parity in choosing trial states

In situations where the parent potential V0 is symmetric, one can extract some advan-
tages of choosing trial states because the odd states are known to have a node fixed
at the origin, and both even and odd states have all other nodes, if any, symmetrically
distributed around the origin. Thus one can choose the even and odd states in the
following way,

Even parity states �̃e
n =

n/2∏

k=1
(x2 − α2

k )φk, n ≥ 2

Odd parity states �̃o
n+1 =

n/2∏

k=1
x(x2 − α2

k )φk

3.3 Variational floor and bound

It is a well known fact that Schrödinger Equation of most of the quantum mechani-
cal system can’t be solved exactly. Thus one has to adopt either variation method or
perturbative method for calculation of energy. From that information of optimised sta-
tionary state, respective properties are calculated. Here, same is done to demonstrate
the newly formed uncertainty principle. Moreover convergence of value the energy
and property is shown with gradually increasing the value of N .

In linear variation method, the energy obtain, is always upper bound to the exact
energy. This confirms that with gradual increase of N , will increases the accuracy of
the results. Moreover in linear variation the result obeys the condition (i) and condition
(ii) automatically. In case of non-linear variation if optimisation is performed obey-
ing the two conditions, someone will definitely achieve upper bound results. But, the
tusk becomes gradually tougher as someone proceeds to higher excited state (n ≥ 4).
Recently an idea of unconstrained variation of excited states knowing the nodal struc-
ture of the respective states [21] produces appreciated results, where upper-bound
property of those state is not is not guaranteed. Here, also the optimisation using the
newly formulated properties (i–v) doesn’t guarantee upper-bound character, but eas-
ier to handle, and as a result higher state can be calculated as ease. Among all those
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objective functions, function (iv) is most easy to use as it contains only one operator
related to kinetic energy.

4 Results and discussion

Potential V (x) = x4 is considered for this study.
The classical mechanics results obtain for this potential are as follows:

〈T 〉 = 2

3
βa4 (10a)

〈V 〉 = 1

3
βa4 (10b)

〈

T 2
〉

= 12

21
β2a4 (10c)

〈

V 2
〉

= 5

21
β2a4 (10d)

�T 2 = 8

63
β2a4 (10e)

�V 2 = 8

63
β2a4 (10f)

〈T V 〉 = 2

21
β2a4 (10g)

〈T 〉 〈V 〉 − 〈T V 〉 = 8

63
β2a4 (10h)

�T 2

〈T 〉2 = 2

7
= 0.285714285 (10i)

�V 2

〈V 〉2 = 8

7
= 1.142857143 (10j)

�T 2�V 2

〈T 〉2 〈V 〉2 = 16

49
= 0.326530612 (10k)

where, β is the force constant which is 1 here. a is the amplitude.
Equations (10e), (10f), (10h) demonstrates the truth of Eqs. (2) and (2a). Thus this
calculation is true for both classical as well as quantum mechanics. Just like Virial
Theorem.

Now, switch the Quantum Mechanical calculations. V (x) = x4 is a well known AO
model commonly known as Quartic Oscillator model. Let us initiate the discussion
by checking the convergence of the various results. This would ensure the gradually
betterment of the expectation values of the desire properties and leads to conclusion.
Actually as Schrödinger Equation of most of the quantum mechanical system can’t be
solved exactly then, here employment of this variational scheme will serve the desire
purpose. In Table 1 displays the variational results achieved by routinely increasing
the size N (5, 8, 10, 15, 20) of the H matrix. Convergence of the calculated results
of energy for n = 9 state is upto 10-digits, so property calculated is correct upto 3–4
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Table 1 Convergence of energies (Ēn) and convergence of properties
(
�Tn〈T 〉n

,
�Vn〈V 〉n

,
�Tn�Vn〈T 〉n 〈V 〉n

)

w.r.t state,

obtain by linear variation scheme employing Eqs. (8), (9) for potential V (x) = x4

n N Ēn
�T 2

n
〈T 〉2

n

�V 2
n

〈V 〉2
n

�T 2
n �V 2

n
〈T 〉2

n 〈V 〉2
n

0 5 1.060 362 1.838 28 7.353 3 13.517 6

8 1.060 362 090 1.838 112 5 7.352 450 13.514 63

10 1.060 362 090 48 1.838 112 355 7.352 449 4 13.514 628 1

15 1.060 362 090 484 182 1.838 123 532 435 7.352 449 412 974 0 13.514 628 092 585

20 1.060 362 090 484 182 899 1.838 112 353 243 505 7.352 449 412 974 0231 13.514 628 092 585 51

1 5 3.799 67 0.5868 2.3475 1.3776

8 3.799 673 0 0.5868069 2.3472276 1.377369

10 3.799 673 029 80 0. 58680684877 2.347227395 1.37736911

15 3.799 673 029 801 3941 0.58680684811902 2.34722739247609 1.3773691079975

20 3.799 673 029 801 3941 68 0.58680684811902175 2.3472273924760870 1.377369107997522

2 5 7.4557 0.3940 1.5765 0.6211

8 7.455 697 9 0.393676 1.574706 0.619924

10 7.45569793 0.393675749 1.5747030 0.61992238

15 7.455697937986738 0.39367574463752 1.57470297855 0.6199223676636

20 7.45569793798673839 0.3936757446374988 1.57470297854999 0.6199223676635566

3 5 11.6448 0.3414 1.3662 0.4664

8 11.6447455 0.341108 1.364433 0.465419

10 11.644745511 0.34110767 1.36443069 0.46541777

15 11.64474551137816 0.3411076667429 1.3644306669719 0.46541776124349

20 11.6447455113781620 0.341107666742961 1.36443066697184 0.465417761243309

4 5 16.264 0.3235 1.2977 0.4199

8 16.26182 0.319297 1.27719 0.4078061

10 16.2618260 0.3192907 1.277163 0.4077864

15 16.2618260188502 0.31929072033 1.277162881337 0.407786256366

20 16.261826018850226 0.3192907203338 1.2771628813352 0.4077862563651

5 5 21.2422 0.3128 1.2550 0.3926

8 21.23837 0.30822 1.23289 0.38000

10 21.23837294 0.30821463 1.232858586 0.3799850

15 21.23837291823 0.308214546432 1.2328581857 0.3799848265

20 21.238372918235940 0.3082145464316 1.232858185726 0.379984826528

6 5 26.5706 0.3201 1.2993 0.41600

8 26.5285 0.30190 1.20767 0.364606

10 26.5284717 0.301834 1.207339 0.3644168

15 26.52847118368 0.30183367401 1.20733469606 0.3644142670

20 26.52847118368251 0.3018336740028 1.207334696011 0.3644142670482

7 5 32.1576 0.3174 1.2880 0.4089 0.4089

8 32.09868 0.29791 1.191730 0.3550

10 32.0985985 0.297827 1.1913114 0.354805

15 32.0985977109 0.29782634 1.191305395 0.3548021

20 32.0985977109683 0.2978263650 1.19130539505 0.3548021554
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Table 1 continued

n N Ēn
�T 2

n
〈T 〉2

n

�V 2
n

〈V 〉2
n

�T 2
n �V 2

n
〈T 〉2

n 〈V 〉2
n

8 5 38.4903 0.353 1.502 0.531

8 37.9243 0.2958 1.1838 0.35017

10 37.923017 0.29516 1.180670 0.3484928

15 37.92300102713 0.2951465 1.1805860 0.348445826

20 37.9230010270339 0.295146499 1.180585999 0.3484458256

9 5 44.6770 0.3539 1.496 0.529

8 43.9831 0.2940 1.1768 0.3460

10 43.981183 0.293290 1.1731726 0.344080

15 43.981158097 0.2932666373 1.1730665495 0.344021282

20 43.9811580972897 0.29326663700 1.17306654802 0.34402128152

Fig. 1 To show the
convergence of �Tn〈T 〉n

(using
N = 20 basis) towards classical
value for potential V (x) = x4

0 2 4 6 8 10
0.4

0.6

0.8

1.0

1.2

1.4
CLASSICAL VALUE : 0.5345224834

Δ
T

/<
T

>

n

digits for that particular state. Because from variation Theorem, when there is error in
energy value in second order, then there is error in first order in property values. Thus,
property calculated using Eqs. (8) and (9) are at least accurate upto 3–4 digits. Here
Table 1 (last three columns) and Figs. (1–3) explains that with increase of quantum
number, those properties decreases and approaches to classical value. Actually it is
expected that within finite n the convergence of desire properties is observed. Thus
this demonstration proves the above said uncertainty relation in a convincing way.

Here concentration is on the family of anharmonic oscillators defined by for non-
linear calculation:

H = − d

dx2 + λx4 (11)

These oscillators have attracted considerable attention over the years (see, e.g., Refs.
[20,21] and references quoted therein) as benchmark to assess the quality of any new
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Fig. 2 To show the
convergence of �Vn〈V 〉n

(using
N = 20 basis) towards classical
value for potential V (x) = x4

0 2 4 6 8 10
0.8

1.2

1.6

2.0

2.4

2.8

CLASSICAL VALUE : 1.069044968

n

Δ V
/<

V
>

Fig. 3 To show the
convergence of �Tn�Vn〈T 〉n 〈V 〉n

(using
N = 20 basis) towards classical
value for potential V (x) = x4

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

CLASSICAL VALUE : 0.571428571

Δ
T

ΔV
/<

T
><

V
>

n

recipe. This is primarily because of the simplicity of H in (11) and hence the avail-
ability of results by numerous methods of varying accuracy and sophistication. Here,
results presented for λ = 1. In view of the small- and large-x behaviours of stationary
wave functions of (11), we use:

ψ̃0 = exp

[

−ax2
(

1 + bx2 + cx4
) 1

4
]

(12)

We first summarize our chief findings in Table 2, displaying average energies of the
lowest 6 states of (11) at λ = 1 and some properties. Once again, here point is that
errors incurred are only marginal in the overall process (compare to Table 1) also how
nodal positions and the VR are affected as the increase of the states. It is found that the
errors slowly increase as proceed to higher states. This is obviously due to increasing
constraints of the excited states. It is expected that if the flexibility of the trial state
chosen is more then accuracy will automatically increase. Similar reason is responsible
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Table 2 Average energies and some properties of the first six approximate states of (11) at λ = 1

n Nodal position Ēn VR Objective function-(P4)

0 – 1.060 362 09 0.999 999 60 0.000 000 48

1 – 3.799 673 0 0.999 999 25 0.000 000 98

2 ±0.575 449 19 7.455 697 96 1.000 001 23 0.000 005 71

3 0, ±0.923 923 88 11.644 745 25 0.999 996 06 0.000 002 72

4 ±0.389 536 23, 16.261 826 72 0.999 977 96 0.000 009 65

±1.179 679 31

5 0, ±0.682 090 10, 21.238 372 68 0.999 983 54 0.000 008 59

±1.384 572 35

Table 3 Overlap values
〈

ψ̃i

∣
∣
∣ψ̃ j

〉

of the stationary states of (11) for i, j = 0, 1, . . . , 5

j

i 0 1 2 3 4 5

0 1 0 0.000 084 51 0 0.000 925 97 0

1 0 1 0 0.000 013 67 0 0.000 037 75

2 0.000 084 51 0 1 0 0.003 282 99 0

3 0 0.000 013 67 0 1 0 0.000 916 23

4 0.000 925 97 0 0.003 282 99 0 1 0

5 0 0.000 037 75 0 0.000 916 23 0 1

Table 4 Hamiltonian coupling values
〈

ψ̃i

∣
∣
∣ H

∣
∣
∣ψ̃ j

〉

of the stationary states of (11) for i, j = 0, 1, . . . , 5

j

i 0 1 2 3 4 5

0 1.060 362 09 0 0.000 050 76 0 0.000 993 34 0

1 0 3.799 673 0 0 0.000 512 43 0 0.000 164 84

2 0.000 050 76 0 7.455 697 9 0 0.024 503 40 0

3 0 0.000 512 43 0 11.644 745 5 0 0.001 997 37

4 0.000 993 34 0 0.024 503 40 0 16.261 82 0

5 0 0.000 164 84 0 0.001 997 37 0 21.238 37

for the observed trends in values of
〈

ψ̃i

∣
∣
∣ψ̃ j

〉

that are displayed in Table 3, The behav-

iour is comparable with the data presented in Table 4 of the estimates of the integrals
〈

ψ̃i

∣
∣
∣ H

∣
∣
∣ψ̃ j

〉

. All such integrals should ideally vanish for i �= j . But the tables reveal

that the off-diagonal elements roughly increase with increasing (i, j). This is again
due to increasing accumulation of errors, in general, for higher excited states, since
larger number of constraints is involved. In cases, however, there may be observe slight
disagreements, and these are certainly because of accidental cancellations of errors.
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In general, therefore, this example, including some stringent tests of goodness of
the quality of approximate eigenstates obtained via the present recipe, point to the suc-
cess of the this property dependent variation method. Keeping in mind that here used
a mere three-parameter function to construct all the states tabulated here, this results
look quite satisfactory. Surely, a more flexible trial function would have performed
much better.

5 Conclusion

In summary, a new state dependent uncertainty relation is formulated. This relation
indirectly tells the lower bound nature of uncertainties of kinetic and potential energy,

as the minimum value of �T 2
n �V 2

n
〈T 〉2

n〈V 〉2
n

is known for a particular potential. The motivation

is to get at least some information regarding the uncertainty product of �T 2
n �V 2

n for
a particular potential.

I have put forward a scheme of obtaining excited quantum stationary states through
an unconstrained minimization of the P4. The motivation is to derive and extend the
applicability of the property (mandatory condition in stationary states) based optimisa-
tion method rather than RQ or least square minimisation method. Let then emphasize
here that although the linear variational method stands usually as a handy tool for
excited-state calculations in many critical circumstances, and particularly work using
coupled variations, with one nonlinear parameter, has proved to be rewarding too
[22,23] even recently, there are pathological cases where choice of a suitable basis
set with properties demanded by the potential is lacking. Then, one is forced to opt
for nonlinear variations. Real problems of excited-state calculations become appar-
ent only in such situations. A clear case in this context is the study of supersingular
spiked oscillators [24] given by the potential x2 + λ

xα , with λ > 0 and α ≥ 3. There
the present route will find a distinctive edge. Work along this direction is in progress.
Property minimization in excited-state calculations by using nonlinear variational trial
wave functions is the key point here. The problem of an a priori knowledge of nodal
positions is circumvented in this methodology by importing this variation diractly.
Although for this type of minimisation doesn’t require any additional information of
node or any special state dependent character. This minimisation is a general scheme
of optimisation of any trial states, particularly in respect of electronic structure calcu-
lations.

As nonlinear variations are much more powerful than the linear ones, the endeav-
our has been found to be rewarding even when one chooses a three-parameter wave
function to simulate some fifth excited state. Result for the Hamiltonian (11) is a clear
case in point. Thus, the kind of generality the present recipe provides is remarkable.
And, this is certainly a much more desirable extension in comparison with the sac-
rifice made of the upper bound nature of average energies that one obtains in linear
variations. Hope, further studies along this line may surely explain the utility of this
type of variational calculation.
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